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Novel Image Analysis to Link Sub-Nuclear Distribution of Proteins  
with Cell Phenotype in Mammary Cancer 

Investigators: David W. Knowles (Collaborating laboratories: Sudar, Lelièvre, Bissell, Badve & Hamann) 
 
INTRODUCTION: 
The goal of this project is to develop novel optical imaging / image analysis techniques that will allow 
automated, quantitative screening to distinguish malignant, pre-malignant, and non-malignant mammary tissue. 
Our hypothesis is that cellular and tissue phenotype is reflected by the organization of components within the 
nucleus. By developing imaging-based methods to quantify the spatial distribution of these proteins, the work 
will provide understanding of how the nuclear distribution of various chromatin-associated proteins correspond 
with the phenotype of the cells and tissue. We believe that this quantitative analysis will have applications for 
classifying normal and pathological tissues. 
 
BODY: 
A. Summary of work: 
This work focuses on the distribution of chromatin-related nuclear proteins in a progression series of cultured 
HMT-3522 human mammary epithelial cells (HMECs) that mimic early stages of cancer development. 
Nonneoplastic S1 HMT-3522 cells recapitulate differentiation into phenotypically normal breast glandular 
structures in 10 day of three-dimensional (3D) culture. 3D culture is preformed by placing cells in contact with 
an exogenous extracellular matrix enriched in basement membrane components (Matrigel), and supplying cells 
with essential growth factors and hormones. Glandular structure formation encompasses cell proliferation (until 
day 6), growth-arrest and deposition of a continuous endogenous basement membrane around the glandular 
structure. Malignant T4-2 HMT-3522 cells mimic tumor growth, with the formation of disorganized 
multicellular structures in which cells keep proliferating, when cultured in the same conditions. Nuclear mitotic 
apparatus, NuMA, protein has been previously found to undergo remarkable changes in its nuclear organization 
during glandular structure formation6. During the proliferating stage the distribution patterns of NuMA appear 
homogenous throughout the cell nucleus and was seem similar to what is observed in tumor cells. Whereas, 
upon differentiation, NuMA is reorganized into foci within the cell nucleus and ring-like patterns at its 
periphery. Culturing of the cells and fluorescence labeling of the NuMA protein was be carried out, under 
subcontract, at the Lelièvre laboratory at Purdue University. Image collection, the development of novel image 
analysis techniques and the image analysis has be performed at our facility at LBNL. 
 
Year 1. Key outcomes of the first year of work (Months 1 - 12) were the acquisition of images of NuMA 
organization in cells cultured between 4 and 12 days and the development of a local bright feature (LBF) 
analysis method. Previously we had only studies proliferating cells at 4 to 5 days of culture, but after 10 days of 
culture, nonmalignant cells have differentiated into acini and malignant cells have proliferated into large 
unorganized clusters. Analyzing images from these cultures has strengthened our initial hypothesis about the 
reorganization of NuMA in nonmalignant cells and this has been key in the further development of our image 
analysis techniques. The LBF analysis method we developed allows bright foci within a nucleus to be isolated 
from the diffuse NuMA staining.  
 
Year 2. In the second year of work (Months 13 - 24) we have maintained our primary focus on quantifying the 
distribution of NuMA and extended our image analysis capability to allow the distribution of NuMA foci to be 
measured within an individual nucleus and thus on a per nucleus basis. Briefly, this has been achieved by 
several key developments. 1) Our nuclear segmentation ability has been extended to allow automated 
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segmentation of individual nuclei from a cluster of cells. 2) Our local bright feature (LBF) analysis has been 
modified to allow both local bright and local dark features within a nucleus to be isolated for further analysis. 3) 
Image analysis techniques were developed to allow each nuclear volume to be subdivided into a set of 
concentric terraces. These refinements have allowed us to calculate the relative density of NuMA foci in each 
nucleus, on a per terrace basis and evaluated as an effective radial distribution from the perimeter of the nucleus 
to its center.  
 
Year 3. In year 3, (Months 25-36) significant development was done on an automated segmentation analysis 
which isolated the position and extent of nuclei from 3D images. The local bright feature analysis was refined to 
extract local dark as well as local bright features from within images of nuclei fluorescently stained for specific 
nuclear proteins. Compartmentalization of individual nuclei into a set of concentric terraces allowed the 
quantification of the radial distribution of specific labeled proteins in individual nuclei. Application of these 
automated imaging techniques to reveal striking differences in the organization of NuMA between proliferating 
non-malignant cells and proliferating malignant cells. These methods have allowed us to representing the 
distribution of NuMA bright features associated with different mammary phenotypes as a simple graph, hence 
enabling an easy interpretation of the spatial distribution of the protein. The performance of the LBF analysis 
was greatly enhanced by the development of an automated segmentation of the nuclear volume that enabled us 
to analyze thousands of nuclei in a short period of time. Using this novel image analysis technique we measured 
the striking reorganization of NuMA during acinar morphogenesis, while no such reorganization occurred 
during tumor formation. Most importantly, the LBF analysis permitted a clear discrimination between 
proliferating non-malignant cells and proliferating malignant cells, which was not achieved so far using other 
evaluation methods.  
 
Year 4. In year 4, (Months 37-48) significant progress was achieved. 
1) Based on our cluster analysis results for the distribution of NuMA in nonneoplastic (S1) and malignant (T4) 
cells, we have developed a classification method which is able to detect the phenotype of cells at the single cell 
level (SectionC.4). This work is the basis of a manuscript in preparation42. 
2) We have measured the radial distribution of NuMA in premalignant (S2) cells which growth arrest into 
spheroids which comprise vastly different numbers of cells. 
3) We then applied our clustering analysis technique to the distribution results of NuMA in premalignant (S2) 
cells, which reveals at least two separate spheroid phenotypes. Interesting the two phenotypes were size 
dependent. 
4) In this past year we have started developing visualization methods in three dimensions. Through a 
collaboration with the Visualization and Graphics Research Group at the University California, Davis, we have 
developed novel visualization tools to: i) render protein distribution onto the segmentation mask (see Section 
C.6.1), ii) render analysis results onto the tissue context (see Section C.6.2) and iii) render analysis results onto 
section of normal human mammary tissue (see Section C.6.3). 
5) This work was selected for platform presentation at the U.S. Department of Defense Breast Cancer Research 
Program funded  Era of Hope meeting, June 8-11 2006 in Philadelphia. 
6) The project has had a major publication in the Proceedings of the National Academy of Sciences24. See 
appendices. 
7) The publication in PNAS24 resulted in a press release and an article describing the work in the monthly 
magazine The Berkeley Lab View 
(see http://dwknowles.lbl.gov/060306.Lelievre.fluo.html)  
(see http://www.lbl.gov/Publications/Currents/Archive/Apr-21-2006.html). 
8) Knowles has submitted and resubmitted an R33 proposal to continue this work to the NIH/NCI. In the first 
round, the proposal received a score or 168 and in the second round, a score of 153. The proposal is currently in 
programmatic review. As a new investigator, I was encouraged by, and grateful for, the comments and concerns 
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raised by the reviewers. All have agreed that the proposed work was innovative and all had been highly 
supportive.  
 

Reviewer 1 said “The proposed research will yield a unique bridge between structural expression of 
nuclear proteins and cancer classification phenotype.” 
 
Reviewer 2 said (Histopathology) ”is laborious, time-consuming, and importantly, susceptible to 
examiner subjectivity. Consequently, means to make the process quantitative and automatable is 
highly desirable and of great significance.” 
 
Reviewer 3 said “This is careful, deliberative work. The investigators have mapped out a good plan 
that promises to yield a significant new technique for cancer treatment.”  
 
Reviewer 4 said “This has required the development of some fairly sophisticated nuclear 
segmentation and image analysis tools, for which they should be applauded. The next steps, which 
are to move to mixed cultures and eventually to frozen sections and tissue biopsies, are exactly the 
right steps.” 

 
B. Background  
Under an exploratory Department of Defense Breast Cancer Research Program Award (see: 
http://cdmrp.army.mil/cgi-bin/search/get_abstract.pl?id=5467&log=BC011187) which has supported a 
multidisciplinary collaboration between Sophie Lelièvre, a cancer biologist at Purdue University and myself, we 
have developed image analysis methods to quantitatively describe the organization of specific nuclear 
chromatin-associated proteins. By applying our novel Local Bright Feature (LBF) methods to three-dimensional 
culture models that mimic normal and malignant breast epithelial tissue we have demonstrated that the 
distribution of Nuclear Mitotic Apparatus protein (NuMA) and heterochromatin related protein histone 4 
methylated on lysine 20 (H4-K20m) are biomarkers capable of distinguishing non-neoplastic and malignant 
human mammary epithelial cells.  
The broad goal of this project is to develop technologies capable of turning high resolution fluorescence 
images of human mammary epithelial tissue into tissue-maps which report the probable nonneoplastic, 
premalignant and malignant phenotype at cellular resolution. The translational application of these 
methods is to aid the treatment decision process of breast cancer patients by providing pathologists with 
a phenotype tissue-map, based on nuclear protein organization, to aid and support the histological 
classification of biopsied breast tissue. 
 
Our working hypothesis is that the distribution of chromatin-related proteins will permit a novel imaging-based 
phenotype screening of individual nuclei and the recognition of subtle differences in tissue morphology and 
behavior, which would enable better detection of benign and malignant lesions. Our rationale is that chromatin 
organization and associated redistribution of chromatin-related proteins reflect the changes in gene expression 
that accompany alterations in cell phenotype. Thus, a wide range of distinct distributions of chromatin-related 
proteins characteristic of different stages of breast cancer and/or degrees of cell malignancy should be 
recognized. The goal of this project will be achieved in three specific aims. 
 
B1. The Problem 
Breast tumors are detected by self exam, clinical exam and mammogram. Suspicious results are evaluated with 
diagnostic mammography, ultra-sound and magnetic resonance imaging, and needle and surgical biopsy 
followed by histological and cytological analysis. The histological classification of these biopsies plays a 
determining role in the treatment decision. Unfortunately, the risk associated with benign or pre-invasive 
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disease, the appropriate treatment or adjuvant treatment, and the risk of reoccurrence are poorly understood. As 
a consequence patient treatment is based on epidemiological findings rather than individual needs. Non-invasive 
tissue imaging using X-rays, ultra-sound and magnetic resonance provide information about the presence of 
breast tumors but the goal of early cancer detection by routine non-invasive screening is simply not currently 
feasible or realistic. However, once a tumor has been detected and biopsied, there is urgent need for novel 
methods that would rapidly quantify subtle epigenetic abnormalities within the tumor cells and aid the 
identification of lesions of poor prognosis within the categories of benign, premalignant and malignant diseases.  
 
B2. Existing Knowledge 
One key epigenetic marker of cell phenotype is the organization of nuclear proteins which direct and reflect 
nuclear functions necessary to orchestrate cell proliferation and differentiation1-3. It is becoming increasingly 
apparent that the organization of the cell nucleus plays a central role in directing nuclear functions necessary to 
orchestrate cell proliferation and differentiation1-3. Nuclear functions are carried out by proteins that display 
specific compartmentalization (e.g., nucleolus, nuclear domains, chromatin) and distribution (e.g., diffuse, foci-
like) characteristics. In addition, there is growing evidence to show that the organization of nuclear proteins is 
dynamic, as illustrated during the cell cycle4-5, upon the switch between proliferation and growth arrest6, and 
following cell differentiation7-8. The use of 3-D models of cell culture has revealed that the distribution of 
nuclear proteins is also dependent on tissue morphogenesis9,6.  
 
3D cell culture models have been used to compare the organization of major nuclear proteins in non-
differentiated and differentiated mammary epithelial cells to better apprehend the role of these proteins in the 
establishment and maintenance of mammary acinar differentiation. Remarkable differences have been found in 
the distribution of nuclear proteins including Rb, splicing factor SRm160, and NuMA between the early stage 
and the completion of acinar morphogenesis by non-neoplastic HMT-3522 S1 human mammary epithelial cells 
(HMECs)6. Notably, the distribution of NuMA displays a gradual modification during the 10-day in vitro 
morphogenesis process. NuMA staining is diffusely distributed within the nuclei of proliferating cells, but 
aggregates into foci of increasing size as cells arrest proliferation and complete acinar morphogenesis. 
Importantly, the distribution of NuMA in acinar S1 cells is similar to that observed on biopsies of normal breast 
tissue, indicating that the 3D model of acinar morphogenesis reproduces physiologically relevant characteristics 
of NuMA organization. Although the distribution of NuMA is classically reported as diffuse in cells cultured in 
non-differentiating condition (i.e., cultured on plastic surface producing a flat monolayer of cells), the 
reorganization of NuMA observed during mammary epithelial morphogenesis in 3D culture has been steadily 
reinforced by reports indicating that this protein has distinct distribution patterns in different tissues10 and is 
observed as a single aggregate in the center of the cell nucleus in different cell types undergoing apoptosis11-12. 
Moreover, a more punctate distribution of NuMA has been associated with a higher susceptibility to apoptosis 
induction in lymphocytes13. Thus, NuMA distribution appears highly dependent on cell and tissue phenotypes 
and, as such, it has been proposed to constitute a good indicator of cell behavior6;11;13.  
Notably, the involvement of NuMA in the chromatin compartment and the importance of NuMA organization 
for the maintenance of chromatin structure14, suggest that NuMA distribution may be highly sensitive to 
changes in gene expression profile associated with alterations in cell phenotype. Similarly we have observed 
dramatic alterations in the distribution of chromatin markers during breast differentiation such as 
heterochromatin markers histone 3 methylated on lysine 9 (H3K9m)9 and H4-K20m, and telomere-associated 
protein TIN215. In contrast, structural proteins like lamin B or PML did not show a striking reorganization upon 
acinar differentiation6. 
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C. Results 
C1. Development of the Local Bright Feature (LBF) image analysis 
It has been understood for decades that cancer cells display alterations in nuclear size and general chromatin 
organization as measured by density and texture16, but there is very little information available regarding 
alterations in specific nuclear components in neoplasias. With the advent of confocal imaging technology, three-
dimensional high-resolution imaging has become a powerful method for obtaining such organizational data 
within the nucleus. However, the availability and application of robust image analysis tools in biology remain in 
their infancy17 and groups who have relied on three-dimensional images to understand underlying mechanisms 
in biology have had to develop their own image analysis tools18-21;8;22-23. As described below, we have 
developed methods which first quantify the nuclear distribution of specific proteins from 3D fluorescence 
images of cells and tissue, at cellular resolution. Then, using the distribution results from each cell as a feature 
that describes that cell, we are able to group cells with similar features and study their arrangement within the 
natural tissue context. Our current methods are described. 
 
C.1.1. Automated segmentation from three-dimensional images 
To analyze the internal nuclear organization of thousands of nuclei on a per nucleus bases, we have developed 
an automated nuclear segmentation algorithm that is able to define the location and extent of all nuclei from 3D 
fluorescence images of total DNA24. The method is based on the assumption that nuclei of epithelial cells are of 
simple geometry in that they comprise a single spherical core. An adaptive threshold was first applied to the 
DAPI-stained image to produce a binary mask of the nuclei. The technique uses a difference-of-Gaussians 
filter25, followed by a morphological closing filter and a flood-fill algorithm to produce the binary segmentation 
mask26-28. While this technique accurately separates nuclei from their background, it does not completely isolate 
neighboring nuclei when they are tightly clustered. To separate nuclei that are connected by the binary mask, 
their central nuclear cores were located using standard template matching techniques, and dilated into the rest of 
the nucleus using standard region-growing techniques26-28. Briefly, a template, with dimensions that 
approximate the average spherical core of nuclei, was convolved with the binary nuclear mask. This 
convolution produced a map that indicated the percentage of the template that fit within the binary mask at each 
point in the image. Then, the template was stamped into the binary mask at locations where there were 
corresponding local maxima in the map that exceeded 70%. The templates were stamped at the center-of-mass 
of the local maximum, in an order ranked by their percentage, starting from the highest. A template was not 
stamped if the local maximum was less than 70%, if it overlapped a previously stamped template by more than 
70%, or if the local maximum was at the boundary of the binary mask. Once all the nuclear cores were located, 
each template was dilated in a semi-intelligent fashion into the binary mask. The template dilation was done 
independently in the positive and negative X, Y, and Z directions. Dilation along any direction was halted when 
60% of the dilating template boundary reached the boundary of the binary mask. This prevented a dilating 
template from squeezing through narrow regions in the binary mask that connected two adjacent nuclei. In 
addition, dilation was stopped in all directions if the volume of the dilated template exceeded nine times its 
original volume. This phenomenon occurred if nuclei were clustered so closely that the initial segmentation 
mask failed to separate them adequately. The resulting object was reported as an under-segmentation error. Our 
novel approach of nuclear segmentation is similar in part to that of Irinopoulou and colleagues19. However, in 
their work, they used a global threshold, followed by a distance transform and watershed method to segment 
nuclei on a per image-slice basis. Then they implemented a rule-set for correctly joining nuclei in adjacent 
slices. Instead, our technique uses an adaptive threshold, which works in three dimensions, using a template 
matching method followed by intelligent region growing of the templates. 
 
C.1.2. LBF algorithm used to isolate bright features of immunostaining 
Following immunostaining, image acquisition by confocal microscopy, and segmentation, bright staining 
features/foci are detected and isolated by the LBF analysis technique. This technique was originally developed 
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with NuMA staining but has wide application. In this technique, pixel brightness in the raw NuMA images is 
normalized by the local average brightness using an extension of the difference-of-Gaussians technique25. First 
the raw NuMA image is masked by the binarized segmentation result derived from the DAPI image as 
described above (Figure 1). Then, image brightness within each nucleus is rescaled by dividing the brightness at 
each point by the local average brightness in a region surrounding that point. The local average brightness is 
calculated over a region with a dimension half that of the dimension of the nuclear core. This is important 
because the LBF technique sensitively resolves light or dark features that are smaller than the region but ignores 
features that are larger. Thus, this technique allows the bright features and dark regions of interest within the 
nucleus to be resolved and normalized for the low-frequency brightness variations due to the geometry of the 
nucleus and the axial resolution of the microscope. In the resulting LBF images, bright image features have 
values above unity while dark image features have values below unity.  

 
 
A major concern of using three-dimensional confocal images for quantitative image analysis is the inherent 
properties of the images, which are linked to the nature of their acquisition. Confocal images are more highly 
resolved in directions perpendicular than parallel to the optical axis. This is due to the spatial asymmetry of both 
the point-spread function of the excitation illumination and the microscope's "pinhole" spatial filter. In addition, 
the collection efficiency and hence the brightness of confocal images decreases with depth into the object. This 
penetrative loss is the result of the physical properties of the object, its mounting medium and the objective lens. 
Standard image analysis techniques are often based on ideal imaging assumptions that neglect the inherent 
properties of confocal images. In such cases, images must be preprocessed using restoration techniques to 
remove the confocal artifacts before a quantitative analysis proceeds. In contrast, our approach was to design a 
technique that takes the inherent properties of confocal images into account, and still allow results from images 
acquired in different ways to be quantitatively compared. The aim of the LBF analysis was to isolate local 
bright and local dark features within an image using an adaptive approach. To do so, at each point in the image 
a kernel of neighboring imaging pixels is defined around the point of interest. The LBF analysis then uses the 
relative brightness of the neighboring pixels in the kernel to classify each pixel. These types of non-linear 
techniques are powerful because they mimic human visual perception, especially the ability to isolate rare 
events like small numbers of foci in a diffuse background. Furthermore, the size of the kernel sets a spatial 
sensitivity limit to the LBF technique and its relative dimensions can be easily adjusted to match the spatial 
sampling asymmetry of the microscope. Consequently, the LBF technique is not affected by the absolute 
brightness of an image or long scale brightness variations, like penetrative loss. Restoration techniques like 
background subtraction, attenuation correction and image interpolation are simply not necessary. 
 
 
 
 

B

DAPI

A
C

D

E

NuMA

B
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Figure 1. Isolation of bright features of NuMA staining using the LBF 
algorithm. (A) Single central optical section from a 3D image of an nucleus 
stained for total DNA. Total DNA images are used to create the  the nuclear 
segmentation masks. (B) The corresponding optical section showing 
fluorescence immunostained NuMA. (C) The corresponding slice of the NuMA 
image, multiplied by the segmentation mask and convolved with a narrow 
Gaussian filter which removes shot or detector noise. (D)  The similar process as 
in C but using a wider Gaussian filter. The result is the local average brightness 
of the image. (E) The corresponding slice shows the local bright feature (LBF) 
image, generated by taking the positive potion of the subtraction of images 
shown in C and D. This process reveals local bright features and is termed the 
LBF image. 
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C.2. LBF analysis of NuMA measures different distributions depending on the mammary tissue 
phenotype. 
The radial-LBF analysis calculates the normalized distribution of bright features within fluorescence images at 
single cell resolution. The application of this technique for quantifying the nuclear organization of NuMA is 
shown in Figure 2.  
 
 
 

 

Figure 2. LBF analysis of NuMA distribution from 3D images. a. Flowchart of the imaging processing steps 
including a graph of the relative density of local bright features of NuMA in 77 nuclei from the three acini depicted 
in Fig 1b. The radial distributions of local bright features within each nucleus in the NuMA image are calculated by 
first generating a segmentation mask from the image of DAPI-stained DNA. The segmentation mask not only 
defines the extent of each nucleus, but it is also used to define a set of radial steps within each nuclear volume. The 
graph shows the mean and standard deviation of the relative density of NuMA bright features extracted by LBF 
analysis (ordinate) as a function of the relative distance from the perimeter (0.0) to the center (1.0) of the nuclei 
(abscissa). b-h. Distribution density of the bright features of NuMA in acinar cells. S1 HMECs were cultured in 3D 
to induce acinar morphogenesis. Each panel corresponds to the application of the different steps of distribution 
analysis starting from the same original image. b. Fluorescence micrograph of DAPI-stained nuclei from a single 
optical section containing three acini [1;2;3]. c. Fluorescence micrograph of Texas-red immunolabeled NuMA from 
the optical section corresponding to the DAPI image shown in a. d. Segmentation mask derived from the DAPI-
stained image showing a single slice of individually enumerated nuclei. e. Composite view of the local bright 
features (light gray) extracted by the LBF analysis overlaid with the segmentation mask (dark gray). f. Concentric 
terraces resulting from the application of the distance transform on the segmentation mask. 
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3D fluorescence image are acquired for DAPI-stained total DNA (Figure 2A) and Texas-Red immunostained-
NuMA (Figure 2B). The segmentation mask (Figure 2C) is derived from the total-DNA image as described in 
section C.1. For visualization purposes, the LBF image (Figure 2D) calculated from the NuMA image is 
overlaid with the segmentation mask. This clearly indicates that the density of NuMA bright features is low at 
the periphery of the nucleus and varies with the depth, radially, into the nucleus. In order to calculate the radial 
distribution of the local bright features, a distance transform26-28 was applied to the nuclear segmentation mask. 
The transform calculates the shortest distance of each point within a nucleus to the nuclear boundary and in 
doing so, divides each nucleus into a set of concentric terraces of equal thickness (Figure 2E). The LBF image 
is then used in conjunction with the nuclear segmentation mask and the distance transform to compute the 
density of local bright features in each terrace of each nucleus. To reveal the relative distribution of the density 
of bright features within each nucleus, the density per terrace was normalized so that the average density of 
bright features is unity for each nucleus. The distances defined by the distance transform were also normalized 
so that the distance at the nuclear perimeter was 0 and the distance at the center of the nucleus was 1.0. This 
normalization was done to account for variations in the number of terraces per nucleus due to variations in 
nucleus size and shape. Finally, the normalized density of bright features was plotted against normalized 
distance from the perimeter of the nucleus to its center. To demonstrate the consistency of this method, the 
radial distribution was plotted for 77 nuclei of acinar S1 cells analyzed within a single image (Figure 3). As the 
visual representation indicated (see Figure 2D), the density of NuMA bright features was below average at the 
perimeter of the nuclei. And as the radial depth into the nucleus increased, the density of bright features 
increased and reached a peak, above the average density, at a radial distance located around 0.55+-0.05. Then 
the density decreased to a value close to the average density as the center of the nucleus was reached. 
 
Previous visual analysis of the distribution of NuMA in S1 HMECs during the proliferation stage (day 3 of 3-D 
culture) and upon acinar differentiation (day 10 of 3-D culture), suggested that there was an increase in the foci-
like aggregation of NuMA upon completion of acinar morphogenesis6. This analysis was based on visual 
estimation and the manual measurement of the size of NuMA foci on images of NuMA staining. Thus, this 
painstaking and quasi-quantitative analysis only allowed us to get a gross comparison of the redistribution of 
NuMA during morphogenesis.  
 
To assess the efficiency of the radial-LBF analysis in measuring reproducibly the changes in NuMA distribution 
along the morphogenesis process, we analyzed images of S1 HMECs cultured in 3D for 3, 5, 10 and 12 days. 
The radial-LBF analysis revealed changes in the distribution of the relative density of bright features of NuMA 
immunostaining during acinar morphogenesis. For S1 HMECs cultured for 3 days, the density of NuMA bright 
features was highest in a region towards the perimeter (at 0.35R), and maintained an average density elsewhere 
within the nucleus. After 12 days of culture there was a clear reorganization of NuMA away from the perimeter 
and towards the center of the nucleus (Figure 4).  This was accompanied by a significant decrease of NuMA 

Figure 3. Relative density of local bright features of 
NuMA in 77 nuclei from a single image of three acini.
Multi-overlay plots of the  radial-LBF analysis of HMECs 
cultured in 3D to induce acinar morphogenesis shows the 
relative density of NuMA bright features as a function of the 
relative distance from the perimeter to the center of each 
nucleus. 
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bright features at the perimeter of the nucleus. Images of NuMA distribution in acinar cells indeed showed that 
this protein was usually absent from regions located at the periphery of the nucleus (Figure 5). These results 
confirmed our initial observation that acinar morphogenesis is accompanied by reorganization of NuMA6. 
Similar density distributions were obtained with two different antibodies directed against NuMA.   
 

 
 

 
 

 
 

Figure 6. Average relative density of local bright 
features of NuMA during tumor development. T4-
2 cells were cultured in 3D for 4, 5, 10 and 11 days. 
Plots represent the relative density of NuMA bright 
features extracted by LBF analysis (ordinate) of a 
population of nuclei as a function of the relative 
distance from the perimeter (0.0) to the center (1.0) 
of the nuclei (abscissa) for each time point. Vertical 
lines (black) represent the location of the peak of 
bright feature density in the nucleus. Horizontal lines 
(gray) represent the extent of nuclear volume with 
densities of bright features above the average. The 
number of days the cells were in culture and the 
number of nuclei analyzed are indicated above each 
corresponding graph.   

Figure 4. Average relative density of local bright 
features of NuMA during acinar morphogenesis. 
S1 cells were cultured in 3D for 3, 5, 10 and 12 days. 
Plots represent the relative density of NuMA bright 
features extracted by LBF analysis (ordinate) of a 
population of nuclei as a function of the relative 
distance from the perimeter (0.0) to the center (1.0) 
of the nuclei (abscissa) for each time point. Vertical 
lines (black) represent the location of the peak of 
bright feature density in the nucleus. Horizontal lines 
(gray) represent the extent of nuclear volume with 
densities of bright features above the average. The 
number of days the cells were in culture and the 
number of nuclei analyzed are indicated above each 
corresponding graph. Bars represent the standard 
deviations of the relative density of NuMA bright 
features calculated from multicellular units of the 
same phenotype, on a per image basis.  

Figure 5. Immunostaining of NuMA in acinar S1 and malignant T4-2 
HMECs. Image slices of an S1 nucleus (left) and T4 (right) nuclei 
fluorescently stained with anti-NuMA antibodies from cells cultured in 3D 
for 10 days. Each image shows a single confocal section through the 
approximate center of the nucleus. Arrows indicate typical empty areas in 
NuMA staining at the periphery of the nucleus of acinar cells.  The bar 
indicates 2 microns. No=nucleolus
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Since in non-differentiated proliferating S1 cells NuMA distribution is more diffuse than in growth-arrested 
(day 5 of 3-D culture) and fully differentiated (day 10 of 3-D culture) acinar cells, we asked whether the diffuse 
distribution of NuMA was a characteristic of a cell population actively proliferating, regardless of the origin, 
non-neoplastic or malignant, of the cells. Indeed, the overall distribution of NuMA in proliferating tumor cells 
did not seem visually different from that observed in proliferating non-neoplastic S1 cells. To quantitatively 
assess our visual observation, we applied the LBF analysis to 3D cultures of T4-2 cells at days 4, 5, 10 and 11. 
 
During this culture period T4 cells formed disorganized tumor-like nodules of increasing sizes. In contrast to 
non-neoplastic S1 cells, the radial-LBF analysis showed a fairly flat distribution of NuMA bright features in 
malignant cells, regardless of the number of days in 3-D culture (Figure 6). Thus, in agreement with the fact that 
there were no significant alterations in the phenotype of tumor nodules, except for their size, during 11 days of 
3D culture, there was no apparent change in the density of NuMA bright features in the nuclei of tumor cells 
during this culture period.  

 
 
The distribution curves of the density of bright features of NuMA in T4 cell nuclei did not clearly show a peak 
at any of the time points, suggesting that there was a difference in NuMA distribution not only between 
malignant T4 cells and acinar S1 cells, but also between malignant T4 cells and proliferating S1 cells. To better 
visualize the differences in the distribution of the bright features of NuMA for the different phenotypes and time 
points described above, we plotted the cumulative density of NuMA bright features as a function of the distance 
from the nuclear boundary. The cumulative plots unambiguously show that the distribution of the bright 
features of NuMA is consistently similar for the different culture time points of the malignant T4 cells and that 
such a distribution is remarkably different from any of the stages, including proliferation, of acinar 
morphogenesis (Figure 7). 
 
 

Figure 7. The relative density of local bright features of NuMA is different between non-neoplastic 
cells and malignant cells regardless of the differentiation stage. Cumulative plots of the relative density 
of NuMA bright features above unity (ordinate) at different time points of 3D culture of S1 and T4-2 cells as 
a function of the relative distance from the perimeter (0.0) to the center (1.0) of the nucleus (abscissa). 
Cumulative plots for S1 and T4-2 cells were prepared from the relative density data shown in figures 2 and 
4a, respectively. Bars represent the standard deviations of the relative density of NuMA bright features 
calculated from multicellular units of the same phenotype, on a per image basis. 
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C.3. LBF analysis of H4-K20m measures different distributions depending on the mammary tissue 
phenotype. 
Encouraged by the success of the difficult analysis of NuMA distribution, we went on to analyze the 
distribution of H4-K20m, for which we had observed a difference in the staining pattern when comparing S1 
acinar cells and T4 malignant cells (Figure 8).  

 
 
Notably, acinar cells seemed to possess larger H4-K20m staining foci compared to malignant cells. To quantify 
the nuclear distribution of this protein we have developed a foci-counting algorithm which is based on our LBF 
technique. In this foci-counting-LBF analysis, a nuclear segmentation mask is first generated from the total-
DNA image. Bright foci were then detected and isolated by the LBF analysis from the H4-K20m image and 
scored based on their relative brightness and relative size. Briefly, the score was generated from the LBF image 
convolved with a narrow Gaussian function.  

 
 
This manipulation reduced the foci brightness as an inverse function of the foci size. Thus, the local brightness 
maximum in the blurred-LBF image is a combined measure of the foci brightness and size. The histogram of 
foci "score" for all nuclei within an image, revealed a large number of small foci but also larger foci at much 
lower frequency. This result was in agreement with visual analysis of the images. Large foci were defined as 
having scores larger than two standard deviations away from the histogram mean. To refine the analysis of 
bright feature distribution, the number of large foci in each nucleus was counted (Figure 9). For a total of 167 
nuclei of S1 cells, a total of 311 large foci were counted. Interestingly, 40% of the S1 nuclei were devoid of 
large foci. In the nuclei that did have large foci there were on average 3.1 large foci per nucleus. For 77 nuclei 
of T4-2 cells, 35 large foci were counted. 75% of T4 nuclei were devoid of large foci. In the remaining nuclei 
there were an average of 1.8 large foci per nucleus. The p value of the two probability distributions (S1 and T4-
2 cells) obtained from the H4K20 analysis was calculated using a Z-test, which compares the significance of the 
difference between the population means (in this case it is the mean number of large foci per nucleus). For the 
total number of nuclei the mean number of large foci was 1.86+/-2 for S1 cells and 0.45+/-0.8 for T4 (Z>7 and 

Figure 9. Histogram of the number of large H4-K20m foci per nucleus in the S1 acinar cell population, 
T4 malignant cell population and S2 premalignant cell population. S1, S2 and T4 cells were cultured in 
3D for 10 days and immunostained for H4-K20m. The number of foci per nucleus was determined by our foci-
counting-LBF analysis. Histograms of the number of foci per nucleus clearly show that large H4-K20m foci are 
much more abundant in nonmalignant S1 cells than malignant T4 cells. In this revised submission we show 
data for premalignant S2 cells which are characterized by a high number of large foci. 

Figure 8. H4-K20m distribution depends on breast 
phenotype. Left image: immunostaining for H4K20m 
in acini formed in 3D culture (3 acini are shown). 
Arrows point to large foci of H4K20m. L= lumen. 
Right image: immunostaining for H4K20m in tumor 
nodules formed in 3D culture (a portion on a nodule 
is shown). Size bar= 10 microns. 
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p<0.001). Another way to assess if the two distributions are significantly different is to consider the significance 
of finding a single nucleus with three large foci within the same cell population. The p-value for n=3 in the T4 
distribution was p=0.05 (for a single nucleus with 3 or more foci), whereas the p-value for n=3 in the S1 
distribution was p=0.4 (not significant), as should be the case. The analysis was on per nucleus basis and nuclei 
with and without large foci could be easily individually isolated.  
 
We then went on to analyze and show that the nuclear organization of H4-K20m in premalignant S2 cells is 
markedly different from that in either nonmalignant S1 cells or malignant T4 cells. Figure 9, right panel, shows 
the percentage histograms of the number of large H4-K20 foci per nucleus for 568 nuclei imaged in multiple S2 
spheroids. The data shows that only a small percentage (<10%) of S2 nuclei are without large foci and that on 
average S2 nuclei have 6.3+-3 large foci. These new data support our hypothesis by showing that the nuclear 
distribution of H4-K20m is an excellent marker of non-neoplastic, pre-malignant and malignant phenotypes. 
 
C.4 Clustering the radial distribution feature (radial-LBF) of Non-neoplastic S1 and Malignant T4 cells  
To this point the results of our LBF analysis have been reported on an average basis. Although this is a 
powerful way to understand the link between nuclear organization and cell phenotype, it does not allow analysis 
on a per cell basis. To achieve this we have developed a spectral clustering29-31 method to group individual 
nuclei based on the results of their nuclear organization. To demonstrate this capability, we have grouped 
thousands of non-neoplastic S1 nuclei, based on the radial-LBF analysis results of their NuMA distribution 
(shown in Figure 4), and analyzed the statistical link between these clusters and the cell phenotype.  
 
The method represents the radial-LBF analysis results or each nucleus in a high-dimensional space and 
computes the Euclidian pair-wise separation for all nuclei in that space. The inverse of these distances is used to 
calculate the normalized "similarity scores" to describe how similar two nuclei are based on their NuMA 
distribution. The spectral clustering analysis then uses a hierarchical bipartition scheme to group nuclei into 
similar clusters based on the "similarity scores". In each iteration, the spectral clustering approach finds an 
optimal partition that can minimize the similarity between clusters and at the same time maximize the similarity 
within each cluster. The iteration stops when a metric combining these two criteria converges. Note that this 
entire procedure is solely based on the NuMA distribution and does not use prior knowledge about the cell 
phenotype. 
 
Initially we applied this cluster analysis to group 2673 non-neoplastic S1 cells cultured for 3, 5,10 and 12 days 
into four clusters. The overlaid plot of the NuMA distributions for each cluster is shown by the graphs in the 
first row of the table (Figure 10). To analyze the statistical link between these clusters and the cell phenotype, 
we computed the percentage of nuclei falling into each cluster for S1 cells cultured for 3, 5, 10, and 12 days, 
respectively. The result is shown in the second to fifth row of the table. The results clearly show that: 1) the 
fraction of nuclei in cluster 1 decreases with the number of days in culture while the fraction of nuclei in cluster 
3 and 4 increases; 2) the maximum fraction of nuclei at Day 3 (61%), Day 5 (46%), Day 10 (27%), and Day 12 
(34%) fall into cluster 1, 1, 3, 4 respectively; 3) most of the nuclei (over 90%) at Day 3 (corresponding to the 
proliferation stage) belong to clusters 1 and 2, while most of the nuclei (about 66%) at Day 12 (corresponding to 
full differentiation into acini) belong to clusters 3 and 4;  4) at Day 12 the fraction of nuclei within each cluster 
increases from cluster 1 to 4 while at Day 3 the fraction decreases. Plotting the percentage of nuclei falling into 
each cluster as a function of clusters, we generated a histogram indicating how nuclei are distributed across 
clusters for each day, as shown in the last column of the table (Figure 10). The results clearly show that there is 
a statistical correlation between the histogram patterns and the phenotype of cells. In fact, the many clear trends 
revealed by the clusters generated from spectral clustering method would not have been obtained unless the 
LBF analysis of NuMA distribution worked correctly and constituted a good marker of cell phenotype.  
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We then extended this analysis by including all the malignant T4-2 cells. Cluster analysis was performed on the 
2673 nonneoplastic S1 cells along with 4418 malignant T4-2 cells. Figure 10 upper right, shows the results of 
clustering the radial distribution of NuMA for these 7091 cells into 20 clusters. The clusters have been 
arbitrarily ordered. Figure 10 lower-panel shows the corresponding “cluster histograms” which link the nuclei 
within each cluster to their phenotype. As expected the “cluster histograms” show clear differences between S1 
cells cultured for different days (which correspond to different stages in the differentiation process including 
proliferation, growth arrest and progressive polarization). 
 

 

Figure 10. Clustering Analysis and Classification Results. The table shows results of the cluster analysis for 
non-neoplastic S1 cells cultured for 3, 5, 10 & 12 days as the cells differentiate into acini. Cluster analysis 
grouped the radial-LBF analysis of NuMA from 2673 nuclei into 4 distinct clusters (Table,Top Row). To 
understand the link between the clusters and the phenotype, the percentage of nuclei from each day which fall 
into each cluster is calculated (Rows 2-5) and plotted as a histogram (Table,Right Column). The results show a 
clear link between clusters and cell phenotype. We then extended our cluster analysis to group the radial 
distribution of NuMA in 2673 nonneoplastic S1 cells in combination with 4418 malignant T4-2 cells into 20 
clusters (upper right). Each cluster shows the mean and standard deviation of the relative density of NuMA 
bright features (ordinate) plotted against the normalized distance from the perimeter of the nucleus to its center 
(abscissa). We then create the “cluster histograms” for the 7091 cells. Each graph shows the percentage of 
nuclei, of a particular cell type and number of days in culture, that belong to each of the 20 clusters (lower 
panel). The top four histograms show nonneoplastic cells cultured for 3, 5, 10 and 12 days and the bottom 4 
histograms show malignant T4-2 cells cultured for 4, 5, 10 and 11 days. These cluster histograms clearly reveal 
the reorganization of NuMA as nonneoplastic S1 cells differentiate, and show no significant reorganization of 
NuMA as malignant T4-2 cells proliferate. Using this scheme, we were able to predict the number of days in 
culture of nonneoplastic S1 cells with an accuracy of 74±2%. We were able to predict if nuclei were 
nonneoplastic or malignant with an accuracy of 95±3%. 
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Importantly these results also show that there is little change in the distribution of NuMA in T4-2 cells with the 
number of days in culture. In the case of T4-2 cells, the number of days in culture (from day 1 to 11 here) 
correspond to increasing sizes of tumor nodules but it is not accompanied with significant changes in the 
phenotype or cell behavior. These new results support our overall goal of developing an image-based 
technology capable of turning high resolution fluorescence images of human mammary epithelial tissue into 
tissue-maps which report the probable nonneoplastic, premalignant and malignant phenotype at cellular 
resolution. To test the sensitivity of this approach, we developed a classification method which was trained on a 
subset of the results chosen randomly from the 7091 nuclei. We then classified the remaining nuclei, by 
considering the organization of NuMA in the nucleus in question along with its nearest neighbors, and 
correlated the classification result with the known phenotype of each nucleus. By using this scheme, we were 
able to predict the number of days in culture (which correspond to specific stages of differentiation) of 
nonneoplastic S1 cells with an accuracy of 74±2%. We were able to predict if nuclei were nonneoplastic or 
malignant with an accuracy of 95±3%. 
 
C.5: Cluster Analysis Reveals Sensitivity on a per Nucleus Basis 
One of our next challenges was regarding the sensitivity of this approach for identifying phenotypically 
different nuclei on a per cell basis. Since the proposal submission we have extended our cluster analysis and 
classification methods to better understand the sensitivity of our technique. Specifically, we wanted to know, 
with what significance could we classify individual nuclei into their known phenotypes, based on the 
radial distribution of NuMA? Using the cluster analysis results presented in Figure 10, we have developed a 
classification method which was trained on a subset of the results chosen randomly from 7334 non-neoplastic 
and malignant nuclei. We then classified the remaining nuclei, not used as part of the training set. Nuclei were 
classified by considering the organization of NuMA in the nucleus in question along with its nearest neighbors 
within the tissue context, and the classification result was correlated with the known phenotype of each nucleus. 
 

 
 
The results (Figure 11) show that with more than 93% accuracy we can distinguish individual non-neoplastic S1 
cells at 5 days of culture (corresponding to proliferation stage), and 10 and 12 days of culture (corresponding to 
differentiated stages) from all malignant T4-2 cells. At greater than 90% accuracy we can distinguish 
differentiated S1 cells (10 and 12 days in culture), proliferating S1 cells (3 and 5 days in culture) and T4-2 cells. 
The results also show that we cannot distinguish the malignant T4-2 cells cultured for different numbers of days 

Figure 11. Hierarchical representation of 
the probability of classifying individual 
cells by phenotype based on nuclear 
organization. This figure shows a hierarchical 
tree structure indicating the confidence of 
predicting the known phenotype of an 
individual cell and its nearest neighbors based 
on the nuclear radial distribution of NuMA. The 
left column shows the fractional probability of 
being able to classify nuclei into the groups, 
indicated by different colors along each row. 
For example, the 2nd row shows that with 
90.56% confidence we are able to correctly 
classify individual nuclei as corresponding to 
either, a differentiated non-neoplastic S1 cell 
(Days 10 and 12), a proliferating S1 cell (Days 
5 and 3) or a malignant T4-2 cell.  
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with high certainty. This was expected from the results presented in Figure 6 of the proposal, which shows little 
change in the nuclear organization of proliferating T4-2 cells with the number of days the cells were in culture. 
These results indicate that the phenotype of individual epithelial cells can be predicted with high sensitivity 
based on the organization of the nuclear protein NuMA. 

 
This work is included in a manuscript in preparation42.  
 
C.6 The distribution of NuMA in S2 spheroids reveals at least two separate phenotypes. 
One of the goals of this work is developing the capability of subdividing a tissue into different phenotypes 
based on the nuclear organization. Since the proposal was submitted, we have used cluster analysis of the 
distribution of NuMA to show that there are at least two phenotypically different groups of nuclei in 
premalignant S2 spheroids which correlate with spheroid size. To do this, the radial distribution of NuMA was 
quantified for multiple premalignant S2 spheroids of varying size. The radial-LBF distributions of all nuclei 
were then randomized and cluster analysis performed to group the distributions into an arbitrary number of 
clusters. In Figure 12 we show the results for partitioning all the radial-LBF distributions into eight clusters. 
The graphs show the mean and standard deviation of the distribution in each cluster. By grouping nuclei 
according to the spheroid they came from, we are able to create cluster histograms for each spheroid (Figure 12, 
lower panel). We have called these ‘cluster histograms’ the "protein distribution profiles" of each spheroid. 
They clearly show that the distribution of NuMA in the smaller spheroids is different than that in larger 
spheroids. 
 
 
 

 
 
 
 
 
 
 

Figure 12. Distribution of NuMA in S2 spheroids. For 
the cluster analysis of distribution of NuMA in S2 
spheroids, the radial-LBF distributions of all nuclei were 
randomized and grouped into an arbitrary number of 
clusters. Here we show the results for eight clusters 
(upper). Each cluster shows the mean and standard 
deviation of the relative density of NuMA bright features 
(ordinate) plotted against the normalized distance from 
the perimeter of the nucleus to its center (abscissa). The 
lower panel shows the resulting cluster histograms of 13 
spheroids. The cluster histograms reveal two distinct 
phenotypes which correlate to the spheroid size (as 
measured by the number of nuclei in that spheroid). The 
top nine spheroids contained 55.8±21.5 nuclei and the 
bottom four spheriods contained 120.3±22.4 nuclei. 
Each graph shows the percentage of S2 nuclei that 
belong to each of the eight clusters. 
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C.7 Novel Visualization Tools 
C.7.1 Novel Visualization Tools for Rendering Nuclear Distribution and Tissue Morphology in Three 
Dimensions 
Finally, in collaboration with Gunther Weber and Bernd Hamann of the Visualization and Graphics Research 
Group, at the University California, Davis (see: http://graphics.cs.ucdavis.edu/ and 
http://graphics.cipic.ucdavis.edu/~hamann/index.shtml), significant progress has been made towards creating 
visualization tools needed to display the phenotype tissue-map. Indeed, we have developed tools to visualize the 
nuclear distribution of proteins with the tissue morphology in three dimensions. Figure 13 shows a 3D view of 
the three differentiated acini from Figure 2. The tool allows simple three dimensional rendering of the positions 
and volumes of the nuclei, with the image of the protein of interest (Figure 13, left panel). The tool allows the 
user to visualize the image at any rotation and to step through the image at any angle. By doing this, the nuclear 
distribution within each nucleus is clearly revealed (Figure 13, middle) and this view can also be rotated to any 
angle (Figure 13, right panel). Our goal is to link this visualization tool directly to the distribution and clustering 
analysis and to allow the subsequent results to be mapped back onto the tissue morphology. Tools will also be 
developed to allow the user to visually display nuclei within the same cluster-group, to subdivide nuclei by 
cluster-group, to identify nuclei with the same or similar distributions as a chosen nuclei, or to display nuclei in 
terms of a continuous variable formed in multiple ways from the multidimensional feature space in which the 
nuclear distributions are represented. 
 

 
 
C7.2 3D Visualization Tool Renders Distributional Analysis Results onto the Tissue Morphology  
We have extended our three dimensional (3D) visualization tool. We have developed the capability of rendering 
analysis results on the nuclear segmentation mask. Figure 14, shows different views of a single spheroid of 
premalignant S2 cells. Nuclei shown in red have greater than 10 bright foci of heterochromatin marker 
H4K20m and nuclei shown in green have less than 10 bright foci of H4K20m, as determined by our foci-
counting LBF-analysis. By rendering these analysis results onto the tissue morphology, one can quickly see that 
the two groups of nuclei are not randomly distributed but rather tend to be grouped together, within the 
spheroid. 
 

Figure 13. 
Visualization of Tissue 
Morphology and 
Nuclear Distribution in 
Three Dimensions. 
This figure shows views 
of the visualization tool 
we have developed to 
render nuclear positions 
and volumes with the 
nuclear protein of 
interest in 3D (left 
panel). The tools allow 
visualization at any 
plane within the nuclei 
(middle panel) and 
rotations of the 3D 
image at any angle (right 
panel).  
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The ability to render analysis results onto the tissue morphology, gives a clear indication of the arrangement of 
nuclei with different internal organization within the tissue. This allows a completely novel view of a tissue and 
is a step towards our longer term goal of developing the proposed phenotype tissue-map. 
 

 
 
C7.3. Analysis of the Radial Distribution of Fluorescently-Stained NuMA in Deparaffinized Sections of 
Normal Human Mammary Tissue.  
One important area of progress was with the use of fixed, paraffin-embedded tissue biopsy sections. In the past 
year we have started working with normal, premalignant and malignant human breast tissue with a collaboration 
with Sunil Badve MBBS, MD(Path), FRCPath, who is Director of Research Immunohistochemistry and 
Assistant Professor in Pathology at Indiana University. Initially we had worked with freshly frozen tissue 
because it is most amenable to aqueous-based fluorescent staining procedures we use. However, in preparation 
for our image-based techniques to be more widely available, we needed to circumvent the problem of working 
with paraffin-embedded tissues. Paraffin embedding followed by hematoxylin and eosin (H&E) staining are 
standard histological techniques but paraffin has a large autofluorescent signal and needs to be removed to 
allow standard aqueous-based techniques of fluorescence immunochemistry.  
 
Our current technical analysis shows that a combination of biotin and tyramide gives the brightest specific 
signal for NuMA and H4K20m on paraffin sections (Figure 15). In the previous years report we not only 
established our ability to perform fluorescent immunostaining for NuMA on deparaffinized tissue sections but 
also to extract bright features from the nuclei in the resulting images. In this last year, we have extended our 
analysis techniques by establishing that they work with these tissue sections. In figure 16, we show images of 
fluorescently-stained total DNA (left panel) and NuMA (middle panel) which has been overlaid with an outline 
of the nuclear segmentation mask. The radial distribution of NuMA was calculated for each of the nuclei within 
the structure. The majority of the nuclei had a NuMA distribution similar to that of differentiated cultured S1 
cells (see figure 4); however some nuclei had a different distribution of NuMA. By rendering the analysis 
results onto the segmentation mask, we are quickly able to see which nuclei have distributions of NuMA similar 
to differentiated S1 cells (shown in red) and which nuclei have other types of distribution, shown in green (right 
panel). The lower graph shows the average and standard deviation of the radial distribution of NuMA for the 
nuclei labeled in red.  

Figure 14. Rendering analysis results onto the tissue morphology give a completely new view of 
cellular arrangement. This figure shows three views of a single spheroid of premalignant S2 cells 
rendered in 3D to show nuclei with greater than 10 bright foci of H4K20m (red) and those with less than 
10 bright foci (green). The spheriod has been rotated in 3D to show different aspects. The ability to 
render analysis results onto the tissue morphology gives a completely new view of a tissue. In this case 
one can quickly see that the two groups of nuclei, identified by quantitative analysis of the distribution of 
a nuclear protein, are grouped together within the spheroid. 
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These new results support our overall goal of developing an image-based technology capable of turning high 
resolution fluorescence images of human mammary epithelial tissue into tissue-maps which report the probable 
non-neoplastic, premalignant and malignant phenotype at cellular resolution. 
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Figure 15. Fluorescence staining for NuMA and H4K20m on paraffin section of normal breast tissue. Samples were 
immunostained for NuMA and H4K20m using streptavidin-biotin-tyramide amplification method. A. Low resolution 
images of NuMA immunostaining (a and d). Arrows indicate the concentration of NuMA bright staining features in mid 
nucleus (b). DAPI image (c) corresponding to NuMA staining (d). Overlay of the LBF image of NuMA and the 
segmentation mask (for c and d) is shown in (e). B. Low resolution images of H4K20m immunostaining (a and c) and DNA 
counterstain (b and d). Arrows indicate large H4K20m foci in a and c. E= luminal epithelium; M= myopepithelial cells; 
En= endothelial cells. 

Figure16. Radial LBF analysis of NuMA in 
deparaffinized sections of normal human mammary 
tissue. A section from a biopsy of normal looking 
mammary tissue was deparaffinized and the total DNA 
(top left) and NuMA (top middle) were fluorescently 
stained. The nuclear segmentation mask produced from 
the DNA image has been overlaid on the NuMA image. 
The radial-LBF analysis was performed for epithelial 
cells within the ductal-like structure and the results 
applied onto the segmentation mask (top right). Nuclei 
labeled red have a NuMA distribution similar to  that of 
differentiated cultured S1 cells, and nuclei with labeled 
in green have a different NuMA distribution. The graph 
(left) shows the average and the standard deviation of 
the radial distribution of NuMA for the nuclei in red. 
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D. Future Aims 
By understanding the links between nuclear protein organization and the functioning and phenotype of cells, it 
is the future goal of this research to develop image analysis technology to produce a method capable of turning 
high resolution fluorescence images of human mammary epithelial tissue into tissue-maps which report the 
probable non-neoplastic, premalignant and malignant phenotype at cellular resolution. The aim is to aid the 
treatment decision process of breast cancer patients by providing pathologists with a phenotype tissue-map, 
based on nuclear protein organization, to aid and support the histological classification of biopsied breast tissue. 
We believe that such image analysis capability will have an enormous impact in aiding the work of both cancer 
biologists and oncologists who study and classify cells by epigenetic means. We identify the following as the 
next critical steps in the future of this work. 
 
Aim 1: To develop and assess the capability of our Local Bright Feature (LBF) analysis methods to 
identify mixed populations of phenotypically different human mammary epithelia. Currently, our LBF 
analysis methods have been developed using phenotipically homogenous populations of both nonneoplastic and 
malignant cells. Our future work will demonstrate that we can detect phenotypically different cells within a 
heterogeneous population. We will expand our previous work by using cluster analysis on the measured 
distributions of NuMA and H4-K20m to identify and group phenotypically similar cells from heterogeneous 
populations of premalignant cultured cells, mixed populations of premalignant and malignant cultured cells and 
premalignant human mammary tissue biopsies. 
 
Aim 2:  To develop and assess the capability of our Local Bright Feature (LBF) analysis methods to 
automatically analyze heterogeneous populations of human mammary epithelia. Currently our image 
analysis techniques have been developed to automatically analyze the nuclear organization in homogeneous 
populations of epithelia with nuclei of similar volume and “well behaved” shape. One major challenge of 
working with heterogeneous populations of epithelia is identifying those cells belonging to common tissue-
structures and working with nuclei with variations in size and shape. In this phase of future work, spatial 
statistical methods will be developed to identify neighbouring cells comprising a common tissue structure and 
novel improvements will be made to our LBF analysis to maintain automation and analysis accuracy when 
dealing with morphologically heterogeneous populations of epithelia. 
 
Aim 3: To develop and assess the capability of an image-based classification system, that uses the nuclear 
organization of specific proteins to define new sub-classes of various graded lesions. In this phase of the 
future work we will use the cluster analysis results from non-neoplastic, premalignant and malignant cells to 
define a set of features that characterize these cell phenotypes. Using these we will develop a classification 
system which will assign the probable tissue phenotype at cellular resolution. This phenotype tissue-map 
technology could be tested on needle-core biopsies of a variety of premalignant tumors with the aim of defining 
sub-classes of graded lesions. The results will be correlated with the histopathology of the initial needle-core 
and the follow-up surgical biopsies with the hope of predicting more aggressive phenotypes missed by the 
initial screen. 
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KEY RESEARCH ACCOMPLISHMENTS: 
During the course of this project significant accomplishments have been made. 
1) Novel automated image-analysis software has been produce which is able to quantify the nuclear distribution 
of labeled proteins on a per nucleus basis from three dimensional fluorescence images of cells and tissue.  
2) The image analysis has been used to quantify the nuclear distribution of several nuclear proteins and 
demonstrate that the nuclear organization of specific chromatin-related proteins is a marker for the phenotype of 
the cells and tissue. This results is potentially translatable to the clinic. 
3) We have developed cluster analysis methods to group cells based on the nuclear distribution of specific 
proteins, and to provide a “cluster histogram” which links the distribution analysis to the phenotype of the cells. 
4) Through a collaboration with the UC Davis Visualization Group, novel visualization tools have been 
developed to view cells and tissue in their three dimensional context and to map and view the distributional 
analysis results in their tissue context. This ability is providing a new view of the tissue at the cellular level. 
5) Through a collaboration with the Indiana University Cancer Center we have started to apply our image 
analysis methods to biopsied human breast tissue. 
6) We have established protocols for deparaffinizing embedded tissue, fluorescently labeling nuclear proteins 
and have established that our image analysis techniques work in biopsied paraffin-embedded human breast 
tissue. 
 
REPORTABLE OUTCOMES:     
Manuscripts: 
1) Drs. Knowles and Lelièvre have published part of the work from this project in PNAS24. 
2) Drs. Luengo Hendriks and Knowles have a letter in press at the Journal of Microscopy43. 
3) Drs. Long and Knowles have a paper in preparation42. 
 
Invited Presentations: 
1) Dr. Knowles was invited speaker at the LBNL Friends Tour, 30th July 2005 
2) Dr. Knowles was invited and paid speaker the IEEE Computational Systems Bioinformatics Conference 
August 8-11 2005, Stanford University. 
David W. Knowles 2005 Novel Visualization and Quantitative Analysis Methods in BioImaging 
3) Dr. Knowles was invited, paid speaker at the Basic Medical Sciences Departmental Seminar Series, Purdue 
University, April 2006 
4) Dr Knowles is invited Program Committee Member for the 2006 Workshop on Multiscale Biological 
Imaging, Data Mining and Informatics, Santa Barbara, CA, USA Sept 7-8 2006 
 
Abstracts / Presentations: 
1) Fuhui Long, Hanchuan Peng, Damir Sudar, Sophie Lelièvre, David W. Knowles 2005 
Cell Phenotype Classification Based on 3D Cell Image Analysis 
csbw, p. 374,  2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05),  2005 
 
2) David W. Knowles, Sophie A. Lelièvre, Carlos Ortiz de Solórzano, Stephen J. Lockett, Mina J. Bissell, 
Damir Sudar 2001 
Quantitative model-based image analysis of NuMA distribution links nuclear organization with cell phenotype 
Microsc. Microanal. 7:578-579 
 
3) David W. Knowles, Sophie A. Lelievre, William S. Chou, Aaron Lee, Wanling Wen, Carlos Ortiz de 
Solorzano, Mina J. Bissell, Stephen J. Lockett 2000 
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Quantitative model-based image analysis of sub-visual changes in NuMA distribution links nuclear organization 
with cell phenotype Biophys. J. 78:250A 2000 
 
Licenses: Software: 
LBNL under their DOE contract has licensed the software developed during this project. 
 
Funding Applied for: 
1) Drs. Knowles has a pending resubmitted NCI R33 proposal which received a score of 153 and is currently 
being consider by programmatic management. 
2) Drs. Knowles has submitted an internal LBNL research proposals in April of this year to fund the 
visualization tool development for this project. 
3) Dr. Knowles applied for a 2005 DOD BCRP Idea Award which was not funded. 
4) Dr. Fuhui Long applied for a 2005 DOD BCRP Postdoctoral Fellow Award which was not funded. 
5) Dr. Fuhui Long applied for a 2005 California BCRP. 
5) Dr Knowles applied for a 2005 NIH/NCI R33 award which scored 168 but was not funded. 
6) Dr. Knowles resubmitted the NIH/NCI R33 proposal in 2006. The proposal scored 153 and is currently in 
programmatic consideration. 
7) Dr. Knowles has applied for an internal LBNL, LDRD award to fund the visualization component of this 
project. We have succeed to make the second round of this competition. The outcome will be known in October 
2006. 
8) Drs. Knowles and Lelièvre applied to the NIH for a 2004 SPORE Award as part of a collaborative group 
centered at Indiana University. 
9) Drs. Knowles and Lelièvre applied for 2003 Friends You Can Count On Award. 
10) Dr Lelièvre applied for a 2005 DOD BCRP Scholars Award 
11) Dr. Denise Munoz has applied for a 2006 DOD BCRP Era of Hope, Postdoctoral Fellow Award, with Dr. 
Knowles as a collaborator. 
 
Employment Opportunities:  
Dr Fuhui Long applied for and accepted a Staff Scientist position with Prof. Gene Myers at the Janelia Farm 
Research Campus, Howard Hughes Medical Institute. 
 
CONCLUSIONS:   
The ability to quantify the spatial distribution of fluorescent bright cellular features has many biological 
applications ranging from the study of gene expression and protein movement in live cells, and the exploration 
of the structural aspects of cell division, to the investigation of the role of nuclear alterations in 
pathologies19,20,23,44-48. We believe that the LBF analysis, which isolates local bright features, and the radial-
LBF analysis, which quantifies the distribution of the bright features, are examples of powerful tools capable of 
measuring differences in the complex distribution of endogenously expressed nuclear proteins from 3D images 
acquired following simple immunostaining procedures. Radial-LBF analysis has led to findings that strongly 
support the concept that specific cell and tissue phenotypes are reflected by the organization of nuclear 
components. These findings underline the importance of reorganization within the nucleus during the 
differentiation process and the alterations in nuclear organization that may be associated with tumor behaviour.  
 
We are currently developing methods to turn the ability to quantify nuclear protein distributions into a robust 
classification technique to define the probability that individual nuclei belong to a specific cell phenotype. We 
are adding new feature-extraction algorithms and focusing on the distribution of several nuclear proteins. We 
have also started using the LBF-based imaging techniques to investigate the remodeling of protein distributions 
in normal and diseased cells in clinically-derived tissue samples.  
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Our goal is to create a new quantitative 3D “view” of cells and tissues, based on the remodeling of nuclear 
proteins that helps understand the organization of the nucleus and aids in the classification of pathological 
samples. 
 
Dr. Knowles is deeply grateful for the opportunities provided by this award and the privilege to conduct 
the research that this award has funded. 
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The organization of nuclear proteins is linked to cell and tissue
phenotypes. When cells arrest proliferation, undergo apoptosis, or
differentiate, distribution of nuclear proteins changes. Conversely,
forced alteration of the distribution of nuclear proteins modifies
cell phenotype. Immunostaining and fluorescence microscopy have
been critical for such findings. However, there is increasing need
for quantitative analysis of nuclear protein distribution to decipher
epigenetic relationships between nuclear structure and cell phe-
notype and to unravel the mechanisms linking nuclear structure
and function. We have developed imaging methods to quantify the
distribution of fluorescently stained nuclear protein NuMA in
different mammary phenotypes obtained using 3D cell culture.
Automated image segmentation of DAPI-stained nuclei was gen-
erated to isolate thousands of nuclei from 3D confocal images.
Prominent features of fluorescently stained NuMA were detected
by using a previously undescribed local bright feature analysis
technique, and their normalized spatial density was calculated as
a function of the distance from the nuclear perimeter to its center.
The results revealed marked changes in the distribution of the
density of NuMA bright features when nonneoplastic cells under-
went phenotypically normal acinar morphogenesis. Conversely,
we did not detect any reorganization of NuMA during formation
of tumor nodules by malignant cells. Importantly, the analysis also
discriminated proliferating nonneoplastic from proliferating ma-
lignant cells, suggesting that these imaging methods are capable
of identifying alterations linked not only to the proliferation status
but also to the malignant character of cells. We believe that this
quantitative analysis will have additional applications for classify-
ing normal and pathological tissues.

3D automated nuclear segmentation � breast cancer � nuclear
organization � NuMA � quantitative imaging

The organization of proteins within the cell nucleus appears to
play a central role in directing nuclear functions necessary for

cell proliferation and differentiation (1, 2). Several nuclear
proteins have been reported to display a specific compartmen-
talization (e.g., within the nucleolus, nuclear domains, or chro-
matin), and distribution (e.g., diffuse or aggregated), which
change during the cell cycle (3, 4), upon a switch between
proliferation and growth arrest (5), or after cell differentiation
(6–9). Studies using three-dimensional (3D) culture of breast
epithelial cells in the presence of laminin-rich extracellular
matrix have revealed that the distribution of certain nuclear
proteins depends also on tissue morphogenesis (5, 10). These
culture models mimic the formation of specific tissue structures,
where cells display both the function and the spatial arrangement
typically found in a given organ (11, 12). As a consequence, 3D
cell culture models are being recognized as the systems of choice
for unraveling critical cellular events involved in the develop-
ment of pathologies such as cancer (13).

The HMT-3522 cancer progression series of human mammary
epithelial cells (HMECs), cultured in 3D, constitutes a physio-
logically relevant model for studying the relationship between

cellular organization and gene expression in normal and malig-
nant cells (5, 14–17). In such cultures, nonneoplastic HMT-3522
S1 HMECs (18) reproduce the formation of phenotypically
normal, tissue-like glandular structures referred to as acini (17).
Acinar morphogenesis proceeds by stepwise events including a
proliferation stage from days 1 to 6 of culture, followed by
growth arrest and the formation of the baso-apical polarity axis.
Upon completion of acinar morphogenesis at day 10, S1 cells are
organized into spherical and hollow structures delineated by a
basement membrane at their basal pole and a lumen at their
apical pole. Conversely, malignant T4-2 cells, which were derived
from S1 cells (19), continue to proliferate and form disorganized
and invasive tumor-like nodules under the same culture condi-
tions (17, 20). The distribution of nuclear proteins including
retinoblastoma protein Rb, splicing factor SRm160, and nuclear
mitotic apparatus (NuMA) protein is remarkably different be-
tween S1 cells in the early stage of acinar morphogenesis and S1
cells in fully formed acini (5). NuMA is diffusely distributed
within the nuclei of proliferating cells but aggregates into foci of
increasing size as cells arrest proliferation and complete acinar
morphogenesis. Importantly, the distribution of NuMA in acinar
S1 cells is similar to that observed in biopsies of normal breast
tissue, indicating that the 3D model of acini formation repro-
duces physiologically relevant features of NuMA organization.

Earlier reports described the distribution of NuMA as a single
aggregate in the center of the cell nucleus in different cell types
undergoing apoptosis (21, 22) and as diffuse in cells cultured
under nondifferentiating condition (i.e., on plastic surfaces
producing a flat monolayer of cells) (5, 23). NuMA has also been
reported to be organized in distinct foci in differentiated muscle
(24) and differentiated lens cells (8). Another report has shown
an association between a more punctate distribution of NuMA
and a higher susceptibility to apoptosis induction in lymphocytes
(25). Thus, NuMA distribution appears highly dependent on cell
and tissue phenotypes, and, as such, it has been proposed to
constitute a reliable indicator of cell behavior (5, 21, 25).

For decades, it has been known that cancer cells display
alterations in nuclear size and chromatin organization (26, 27).
Yet despite extensive use of the cell nucleus as a central
diagnostic tool in cancer, there is little information available
regarding specific alterations in nuclear organization in neopla-
sia. Understanding the relationship between nuclear organiza-
tion and cell behavior has gained recent attention because it may
help decipher signaling and structural events involved in differ-
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entiation and cancer (28). With the recent refinements in
confocal imaging technology, 3D high-resolution imaging has
become a powerful method for recording subtle organizational
features in the cell nucleus. However, although a number of
recent techniques for the quantitative analysis of 3D images have
been reported (7, 29–34), the availability and application of
robust image analysis tools in biology remain in their infancy (26,
35, 36).

Here, we report the use of confocal imaging to record the
changes in the pattern of NuMA staining in HMECs expressing
different phenotypes and the development of an image analysis
technique to translate the visual observations of the complexity
of NuMA staining into quantitative results. In the original report
(5), NuMA organization was determined by manually measuring
foci sizes. However, such measurements are not possible when
NuMA is diffusely organized and do not take into account the
spatial reorganization of NuMA that is apparent in the differ-
entiated cells. To circumvent this problem, we have developed
the radial local bright feature (LBF) analysis. In this method,
regions of local brightness in images of fluorescently immuno-
labeled NuMA are isolated by an adaptive LBF analysis tech-
nique. The density of local bright features is then calculated
within a set of concentric, volumetric terraces that subdivide the
nucleus radially from its periphery to its center. The distribution
of the bright features of NuMA can be represented by a simple
graph, which permits an easy quantification of the changes in the
spatial organization of this protein associated with different
mammary phenotypes. The method relies on the delineation of
individual nuclei, and to analyze thousands of nuclei in a short
period, we also have developed a previously undescribed auto-
mated, 3D segmentation technique. By using the radial-LBF
analysis, we measured a striking reorganization of NuMA during

acinar morphogenesis; no such reorganization occurred during
the formation of tumor-like nodules. Importantly, the radial-
LBF analysis of NuMA distribution permitted a clear discrim-
ination also between proliferating nonneoplastic cells and pro-
liferating malignant cells, which to our knowledge has not been
achieved so far using other evaluation methods.

Results
Radial-LBF Distribution Analysis in Phenotypically Normal Breast
Acinar Cells Reveals a Peak of Density of NuMA Bright Features
Centered on a Shell Located Midway Between the Periphery and the
Center of the Nucleus. The organization of NuMA in the nucleus
displays intricate spatial distributions that vary with cell and
tissue phenotypes (5, 8, 25). Visual analysis of NuMA immuno-
staining showed the formation of bright NuMA foci in a sea of
diffuse NuMA staining during acinar morphogenesis (5). To
quantify the distribution of bright NuMA foci, we calculated the
radial distribution of the density of NuMA bright features
isolated with the LBF analysis (described in Materials and
Methods) within the 3D volume of each nucleus (Fig. 1a).
S1-HMECs were cultured in 3D to induce phenotypically normal
acinar morphogenesis where NuMA domains are most abun-
dant. Acini were immunostained for NuMA and counterstained
with DAPI (Fig. 1 b and c). A segmentation mask, which
describes the position and extent of individual nuclei in 3D, was
created from the DAPI image (Fig. 1d). Bright NuMA features
were isolated from diffuse staining in the NuMA image by using
the LBF analysis. To visualize the localized accumulation of
NuMA foci in the nucleus, the resulting bright features were
overlaid on the segmentation mask (Fig. 1e). This visualization
indicated that the density of NuMA bright features was low at the
periphery of the nucleus and varied with the depth, radially, into

Fig. 1. LBF analysis of NuMA distribution from 3D images. (a) Flowchart of the imaging processing steps including a graph of the relative density of LBFs of
NuMA in 77 nuclei from the three acini depicted in b. The radial distributions of LBFs within each nucleus in the NuMA image are calculated by first generating
a segmentation mask from the image of DAPI-stained DNA. The segmentation mask not only defines the extent of each nucleus but is also used to define a set
of radial steps within each nuclear volume. The graph shows the mean and standard deviation of the relative density of NuMA bright features extracted by LBF
analysis (ordinate) as a function of the relative distance from the perimeter (0.0) to the center (1.0) of the nuclei (abscissa). (b–f ) Distribution density of the bright
features of NuMA in acinar cells. S1 HMECs were cultured in 3D to induce acinar morphogenesis. Each image corresponds to the application of the different steps
of distribution analysis starting from the same original image. (b) Fluorescence micrograph of DAPI-stained nuclei from a single optical section containing three
acini [1;2;3]. (c) Fluorescence micrograph of Texas red-immunolabeled NuMA from the optical section corresponding to the DAPI image shown in a. (d)
Segmentation mask derived from the DAPI-stained image showing a single slice of individually enumerated nuclei. (e) Composite view of the LBFs (light gray)
extracted by the LBF analysis overlaid with the segmentation mask (dark gray). ( f) Concentric terraces resulting from the application of the distance transform
on the segmentation mask.
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the nucleus. To quantify NuMA bright features, a distance
transform was applied to the segmentation mask to subdivide
each nuclear volume into a set of concentric terraces of equal
thickness, starting at the nuclear perimeter (Fig. 1f ). The
distance transformed-segmentation mask was combined with the
LBF image to calculate the variation of the relative density of
NuMA bright features as a function of the relative radial distance
measured from the perimeter of the nucleus to its center. To
demonstrate the consistency of this radial-LBF analysis, the
radial distribution was plotted for 77 nuclei analyzed within a
single image (Fig. 1a, graph). As the visual representation
indicated (Fig. 1e), the density of NuMA bright features was
below average at the perimeter of the nuclei. As the radial depth
into the nucleus increased, the density of bright features in-
creased and reached a peak, above the average density, at radial
distance 0.55 � 0.05. Then the density decreased to a value close
to the average density as the center of the nucleus was reached.

Distribution of NuMA Bright Features Changes as a Function of Acinar
Morphogenesis. Previous analysis of the distribution of NuMA in
S1 HMECs during the cell proliferation stage (day 3 of 3D
culture) and upon acinar differentiation (day 10 of 3D culture)
suggested that there was an increase in the foci-like aggregation
of NuMA upon completion of acinar morphogenesis (5). This
analysis was based on visual estimation and the manual mea-
surement of the size of NuMA foci on images of NuMA staining.
To assess the efficiency of the radial-LBF analysis in measuring
the changes in NuMA distribution reproducibly along the mor-
phogenesis process, we analyzed images of S1 HMECs cultured
in 3D as a function of time over a period of 12 days. At day 3,
the density of NuMA bright features was the highest in a region
toward the perimeter of the nucleus (Fig. 2). After 10 days of
culture, there was a clear reorganization of NuMA away from the
perimeter and toward the center of the nucleus (Fig. 2). This
reorganization was accompanied by a significant decrease of the
density of NuMA bright features at the perimeter of the nucleus.

Visual inspection of images of NuMA distribution in acinar cells
showed that this protein was usually absent from regions located
at the periphery of the nucleus (Fig. 3). Similar density distri-
butions were obtained with two different antibodies directed
against NuMA (data not shown). To establish the statistical
significance of the differences measured for NuMA distribution
between proliferating S1 cells, cultured for 5 days or fewer, and
differentiated S1 cells, cultured for 10 days or more, we com-
pared the average radial position of the distribution maxima,
shown by the vertical black line in Fig. 2. The P value between
days 5 and 10 was 0.023, indicating significant difference between
the distributions at those days. Thus, these results quantitatively
confirmed our initial visual observation that acinar morphogen-
esis is accompanied by the reorganization of NuMA foci (5).

Distribution of NuMA Bright Features in Malignant T4-2 Cells Differs
from both Proliferating and Differentiated Nonneoplastic S1 Cells. In
proliferating S1 cells (day 3 of 3D culture), NuMA distribution
is more diffuse than at day 5 of 3D culture and in fully
differentiated (day 10 of 3D culture) acinar cells. We asked
whether the diffuse distribution of NuMA was a characteristic of
a cell population that was actively proliferating, regardless of
whether or not it was malignant. As expected, immunostaining
of malignant T4-2 cells for NuMA after 10 days of 3D culture
showed that this protein was mostly diffusely distributed (Fig. 3)
and that overall this distribution did not appear to be visually
different from that observed in proliferating nonneoplastic S1
cells. To quantitatively assess this visual observation, we applied
the radial-LBF analysis to 3D cultures of T4-2 cells as a function
of time up to 11 days. During this culture period, T4-2 cells
formed disorganized tumor-like nodules of increasing sizes. In
contrast to nonneoplastic S1 cells, the radial-LBF analysis
showed a fairly f lat distribution of NuMA bright features in
malignant cells, regardless of the number of days in 3D culture
(Fig. 4a). Thus, despite the increase in mass, there were no
significant alterations in the phenotype of tumor nodules during
11 days of 3D culture, and there was no apparent change in the
density of NuMA bright features in the nuclei of malignant cells
during the entire culture period.

The distribution curves of the density of bright features of
NuMA in T4-2 cell nuclei did not show a clear peak at any of the
time points, suggesting that there was a difference in NuMA
distribution not only between malignant T4-2 cells and acinar S1
cells, but also between malignant T4-2 cells and proliferating S1
cells. To better visualize the differences in the distribution of the
bright features of NuMA for the different phenotypes at the time
points described above, we plotted the cumulative density of
NuMA bright features that exceeded unity on Figs. 2 and 4a as
a function of the distance from the nuclear boundary. The
cumulative plots unambiguously show that the distribution of the

Fig. 2. Average relative density of LBFs of NuMA during acinar morphogen-
esis. S1 cells were cultured in 3D for 3, 5, 10, and 12 days. Plots represent the
relative density of NuMA bright features extracted by LBF analysis (ordinate)
of a population of nuclei as a function of the relative distance from the
perimeter (0.0) to the center (1.0) of the nuclei (abscissa) for each time point.
Vertical lines (black) represent the location of the peak of bright feature
density in the nucleus. Horizontal lines (gray) represent the extent of nuclear
volume with densities of bright features above the average. The number of
days the cells were in culture and the number of nuclei analyzed are indicated
above each corresponding graph. Bars represent the standard deviations of
the relative density of NuMA bright features calculated from multicellular
units of the same phenotype, on a per-image basis.

Fig. 3. Immunostaining of NuMA in acinar S1 and malignant T4-2 HMECs. S1
and T4-2 cells were cultured in 3D for 10 days. Each image shows an optical
section of NuMA immunostaining through the center of the nucleus in an
acinar S1 cell (Left) and a malignant T4-2 cell (Right). One nucleus is shown per
image. Arrows indicate typical empty areas in NuMA staining at the periphery
of the nucleus of the S1 cell. (Scale bar: 2 �m.)
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bright foci of NuMA is consistently similar for the different
culture time points of the malignant T4-2 cells and that such a
distribution is remarkably different from any of the stages of
acinar morphogenesis of S1 cells, including the proliferation
phase (Fig. 4b). To establish the statistical significance of the
differences measured for NuMA distribution between S1 and
T4-2 cells, we calculated the P values of the average maxima
accumulation. Fig. 4b shows that the average maximum accu-
mulation in S1 cells lies �7 SD away from the average maximum
accumulation for T4-2 cells. This finding results in a P value of
�0.001, indicating that the distributions for S1 and T4-2 cells are
significantly different.

Discussion
We have developed an automated image analysis method that
quantifies the radial distribution of nuclear proteins, on a
per-nucleus basis. Although the focus here has been the analysis
of NuMA distribution, the tools developed are expected to be
fully applicable to other nuclear proteins. The analysis identified
individual nuclei within an image, revealed bright features of
NuMA staining within each nucleus, and calculated the relative

density of the bright features of NuMA staining as a function of
the distance from the perimeter of the nucleus to its center. The
results demonstrate quantitatively that the organization of
NuMA is dynamic and is linked directly to the phenotype of the
HMECs. During the process of acinar morphogenesis, there is a
marked decrease in the relative density of NuMA bright features
at the perimeter of the nucleus and a marked increase in this
same parameter toward the center of the nucleus. In contrast, the
relative density of NuMA is more uniformly distributed in
malignant cells and there is no measurable variation in its
distribution during the growth of tumor-like nodules. Further-
more, the distribution of NuMA in malignant cells is clearly
different from that in nonneoplastic cells regardless of the stage
of acinar morphogenesis.

One of the key steps of the image analysis is the delineation
of individual nuclei from 3D fluorescence images. To permit the
analysis of large numbers of nuclei, we have developed a
segmentation method that is automated. Our method builds on
approaches described in refs. 29 and 37–39. Irinopoulou and
colleagues (30) used a global threshold, a distance transform,
and a watershed method to segment nuclei on a per-image-slice
basis. Their final 3D reconstruction then was produced by
implementing a rule-set to correctly join nuclei in adjacent slices.
Our technique uses an adaptive threshold (29) that enables us to
correct for inherent image anisotropy and work directly in three
dimensions. Then, much like Irinopoulou and colleagues (30),
we apply a distance transform, but instead of a watershed
method, we use template-matching and region-growing tech-
niques, which are directed by the results of the distance trans-
form. These techniques allow us to use the known geometry of
the nuclei and produce a more accurate segmentation than an
unconstrained watershed technique (40–43). Our segmentation
method is optimized with the help of tools that present a user
with the raw DAPI-stained image overlaid with the correspond-
ing segmentation mask and permit the visual scoring of the
segmentation accuracy. Application of these tools shows that
although some segmentation errors occur, the number of errors
is insignificant compared with the number of correctly seg-
mented nuclei. Our ongoing efforts are focused on improving the
nuclear segmentation technique to maintain accuracy and effi-
ciency in cases where the morphology of the nuclei is even more
complex.

A major concern of using 3D confocal images for quantitative
analysis is the inherent image anisotropy, which is linked to the
nature of image acquisition. Confocal images are more highly
resolved in directions perpendicular than parallel to the optical
axis. This characteristic is due to the spatial asymmetry of both
the point-spread function of the excitation illumination and the
microscope’s ‘‘pinhole’’ spatial filter. Also, the collection effi-
ciency and hence the brightness of confocal images decreases
with depth into the object. The severity of this penetrative loss
depends on the physical properties of the object, the mounting
medium, and the objective lens. Standard image analysis tech-
niques are often based on ideal imaging assumptions, which
neglect inherent properties of confocal images. In such cases,
images must be preprocessed using restoration techniques to
remove artifacts created by confocal imaging before the quan-
titative analysis may proceed. In contrast, our analysis tech-
niques take inherent properties of confocal images into account
and allow results from different images to be quantitatively
compared, independently of variations in fluorescence staining
efficiency and acquisition parameters. The LBF analysis isolates
local bright and local dark features within an image by using an
adaptive approach where a kernel of neighboring imaging pixels
is defined around each point in the image. The LBF analysis then
uses the relative brightness of the neighboring pixels in the kernel
to classify each pixel. These types of nonlinear techniques are
powerful because they mimic human visual perception, espe-

Fig. 4. Differences in the relative density of NuMA bright features between
nonneoplastic and malignant cells. (a) T4-2 cells were cultured in 3D for 4, 5,
10, and 11 days. Plots represent the relative density of NuMA bright features
extracted by LBF analysis (ordinate) of a population of nuclei as a function of
the relative distance from the perimeter (0.0) to the center (1.0) of the nuclei
(abscissa) for each time point. Vertical lines (black) represent the location of
the peak of bright feature density in the nucleus. Horizontal lines (gray)
represent the extent of nuclear volume with densities of bright features above
the average. The number of days the cells were in culture and the number of
nuclei analyzed are indicated above each graph. (b) Cumulative plots of the
relative density of NuMA bright features above unity (ordinate) at different
time points of 3D culture of S1 and T4-2 cells as a function of the relative
distance from the perimeter (0.0) to the center (1.0) of the nucleus (abscissa).
Cumulative plots for S1 and T4-2 cells were prepared from the relative density
data shown in Figs. 2 and 4a, respectively. Bars represent the standard devi-
ations of the relative density of NuMA bright features calculated from mul-
ticellular units of the same phenotype, on a per image basis.
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cially the ability to isolate rare events, such as a small number of
foci in a diffuse background. Furthermore, the size of the kernel
sets a spatial sensitivity limit to the LBF technique, and its
relative dimensions can be easily adjusted to match the spatial
sampling asymmetry of the microscope. Consequently, the LBF
technique is not affected by the absolute brightness of an image
or long-scale brightness variations like penetrative loss, and
restoration techniques such as background subtraction, attenu-
ation correction, and image interpolation are not necessary.

The ability to quantify the spatial distribution of fluorescent
bright cellular features has many biological applications ranging
from the study of gene expression and protein movement in live
cells and the exploration of the structural aspects of cell division
to the investigation of the role of nuclear alterations in pathol-
ogies (30, 31, 34, 44–48). We believe that the LBF analysis, which
isolates LBFs, and the radial-LBF analysis, which quantifies the
distribution of the bright features, are examples of powerful tools
capable of measuring differences in the complex distribution of
endogenously expressed nuclear proteins from 3D images ac-
quired following simple immunostaining procedures. Radial-
LBF analysis has led to findings that strongly support the concept
that specific cell and tissue phenotypes are reflected by the
organization of nuclear components. These findings underline
the importance of reorganization within the nucleus during the
differentiation process and the alterations in nuclear organiza-
tion that may be associated with tumor behavior. It was not the
purpose of this study to measure independently the effect of
specific cellular events that may account for tumor phenotypes,
like the cell cycle phase or changes in the number of chromo-
somes, on the distribution of NuMA. However, the investigation
of such effects will be of great value to refine the phenotypic
classification, especially when working with small numbers of
cells. A possible future goal is to create a quantitative 3D ‘‘view’’
of cells and tissues, based on the redistribution of nuclear
proteins that helps understand the organization of the nucleus
and aids in the classification of pathological samples.

Materials and Methods
Cell Culture. HMT-3522 nonneoplastic (S1) cells (18) and HMT-
3522 malignant T4-2 cells (19) were cultured in serum-free H14
medium as described in refs. 17 and 20. To induce acinar
morphogenesis, S1 cells were cultured in 3D for up to 12 days on
40 �l�cm2 Matrigel (BD Biosciences)-coated surfaces in the
presence of culture medium containing 5% Matrigel (10).
Tumor-like nodule formation was achieved by culturing T4-2
cells under similar conditions for a maximum of 11 days to avoid
overgrowth.

Immunostaining and Image Acquisition. 3D cultures of S1 and T4-2
cells in four-well chamber slides were permeabilized with 0.5%
peroxide and carbonyl-free Triton X-100 (Sigma Biosciences) in
cytoskeleton buffer (100 mM NaCl�300 mM sucrose�10 mM
Pipes, pH 6.8�5 mM MgCl2) containing protease and phospha-
tase inhibitors (1 mM Pefabloc�10 �g/ml aprotinin�250 �M
NaF), before fixation in 4% paraformaldehyde and immuno-
staining (5). Primary monoclonal antibodies against NuMA were
from clone 204.4 (Oncogene Research Products, San Diego) and
B1C11 (a gift from Jeffrey Nickerson, University of Massachu-
setts, Amherst). Secondary antibody was Texas red-conjugated
(Jackson ImmunoResearch). Nuclei were counterstained with
DAPI. After immunostaining, 3D cultures were mounted in
antifade medium (ProLong; Molecular Probes) under #1 cov-
erglass. Optically sectioned images of DAPI-stained DNA and
Texas red-labeled NuMA were acquired sequentially throughout
the volume of the acini and assembled into 3D images. DAPI and
Texas red signals were acquired simultaneously into separate
channels by using a Zeiss 410 confocal laser-scanning micro-
scope with a planapochromatic 63�, 1.4 numerical aperture

objective. The resulting voxel dimensions of the 3D images were
0.08 � 0.08 �m in the plane of the slide and 0.5 �m along the
optical direction.

Segmentation of Individual Nuclei. To isolate individual nuclei in
the 3D DAPI-stained image, a model-based automatic nuclear
segmentation method was developed on the assumption that
nuclei of epithelial cells are of simple geometry in that they
encompass a single spherical core. An adaptive threshold was
first applied to the DAPI-stained image to produce the binary
segmentation mask of the nuclei. The technique, which normal-
izes for penetrative loss along the optical direction, uses a
difference-of-Gaussians filter (49) followed by a morphological
closing filter and a flood-fill algorithm (40–43). Although this
technique accurately delineates nuclei from their background, it
does not completely separate neighboring nuclei when they are
tightly clustered. To separate nuclei that are connected by the
binary mask, the central core of each nucleus was located, by
using standard template-matching techniques, and dilated into
the rest of the nucleus by using standard region-growing tech-
niques (40–43). Briefly, a template was constructed with dimen-
sions that approximated those of the average spherical core of
nuclei and was convolved with the binary nuclear mask. This
convolution produced a map that indicated the percentage of the
template that fits within the binary mask at each point in the
image. Then the template was stamped into the binary mask at
locations where there were corresponding local maxima in the
map that exceeded 70%. The templates were stamped at the
center-of-mass of the local maximum, in an order ranked by their
percentage, starting from the highest. A template was not
stamped if the local maximum was �70%, if it overlapped a
previously stamped template by �70%, or if the local maximum
was at the boundary of the binary mask. Once all of the nuclear
cores were located, each template was dilated in a semiintelligent
fashion. The template dilation was done independently in the
positive and negative X, Y, and Z directions. Dilation along any
direction was halted when 60% of the dilating template bound-
ary reached the boundary of the binary mask. Halting the
dilation prevented the template from squeezing through narrow
regions in the binary mask that connected two adjacent nuclei.
Also, dilation was stopped in all directions if the volume of the
dilated template exceeded nine times its original volume. This
phenomenon occurred if nuclei were clustered so closely that the
initial segmentation mask failed to separate them adequately.
The resulting object was reported as an undersegmentation
error.

Distribution Analysis of NuMA. After immunostaining, image ac-
quisition, and nuclear segmentation, NuMA bright features were
first isolated by the LBF analysis technique, and then their radial
distribution was calculated by our radial-LBF technique. In the
LBF analysis, pixel brightness in the raw NuMA images was
normalized by the local average brightness using an extension of
the difference-of-Gaussians technique (49). The raw NuMA
image was masked by the binarized segmentation result derived
from the DAPI image as described above. Then the image
brightness within each nucleus was rescaled by dividing the
brightness at each point by the average brightness within a local
region surrounding that point. The dimension of the local region
was chosen to be half that of the dimension of the nuclear core.
This choice resulted in a local region that was significantly larger
than the bright NuMA foci of interest but smaller than the
nuclear dimension. This feature was important because the LBF
technique sensitively resolves light or dark features that lie
within the local region while ignoring features that are larger.
Using this approach allowed the bright foci and dark regions of
interest within the nucleus to be resolved and the low-frequency
brightness variations, due to nuclear geometry and finite axial
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resolution, to be correctly normalized. In the resulting LBF
images, bright image features have values above unity, whereas
dark image features have values below unity. For the radial-LBF
analysis, a distance transform (40–43) was applied to the nuclear
segmentation mask. The transform calculates the shortest dis-
tance of each point within a nucleus to the nuclear boundary and,
in doing so, divides each nucleus into a set of concentric terraces
of equal thickness. The LBF image then was used in conjunction
with the nuclear segmentation mask and the distance transform
to compute the density of LBFs in each terrace of each nucleus
(see Fig. 1a). In each terrace, the density was calculated as the
number of pixels in LBFs divided by the total number of pixels.
The relative distribution of the density of bright features within
each nucleus was revealed by normalizing the density per terrace,
so that the average density of bright features was unity for each
nucleus. The distances defined by the distance transform also
were normalized so that the distance at the nuclear perimeter
was 0 and the distance at the center of the nucleus was 1.0. This
normalization was done to account for variation in the number

of terraces per nucleus due to variations in nucleus size and
shape. Finally, normalized density of bright features was plotted
against normalized distance from the perimeter of the nucleus
to its center.

Statistical Analysis. P values were derived from the standard
normal distribution using the Z score [Z � (X � �)��]. Two
averages with a P value of �0.05 were considered significantly
different.
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10. Plachot, C. & Lelièvre, S. A. (2004) Exp. Cell Res. 298, 122–132.
11. Powers, M. J., Janigian, D. M., Wack, K. E., Baker, C. S., Beer Stolz, D. &

Griffith, L. G. (2002) Tissue Eng. 8, 499–513.
12. Gudjonsson, T., Ronnov-Jessen, L., Villadsen, R., Bissell, M. J. & Petersen,

O. W. (2003) Methods 30, 247–255.
13. Jacks, T. & Weinberg, R. A. (2002) Cell 111, 923–925.
14. Bissell, M. J., Weaver, V. M., Lelievre, S. A., Wang, F., Petersen, O. W. &

Schmeichel, K. L. (1999) Cancer Res. 59, 1757–1763.
15. Bissell, M. J., Rizki, A. & Mian, S. (2003) Curr. Opin. Cell Biol. 15, 753–762.
16. Weaver, V. M., Lelievre, S., Lakins, J. N., Chrenek, M. A., Jones, J. C.,

Giancotti, F., Werb, Z. & Bissell, M. J. (2002) Cancer Cell 2, 205–216.
17. Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R. & Bissell, M. J. (1992) Proc.

Natl. Acad. Sci. USA 89, 9064–9068.
18. Briand, P., Petersen, O. W. & Van Deurs, B. (1987) In Vitro Cell Dev. Biol. 23,

181–188.
19. Briand, P., Nielsen, K. V., Madsen, M. W. & Petersen, O. W. (1996) Cancer Res.

56, 2039–2044.
20. Weaver, V. M., Petersen, O. W., Wang, F., Larabell, C. A., Briand, P., Damsky,

C. & Bissell, M. J. (1997) J. Cell Biol. 137, 231–245.
21. Weaver, V. M., Carson, C. E. Walker, P. R., Chaly, N. Lach, B., Raymond, Y.,

Brown, D. L. & Sikorska, M. (1996) J. Cell Sci. 109, 45–56.
22. Zweyer, M., Riederer, B. M., Ochs, R. L., Fackelmayer, F. O., Kohwi-

Shigematsu, T., Bareggi, R., Narducci, P. & Martelli, A. M. (1997) Exp. Cell Res.
230, 325–336.

23. Mattagajasingh, S. N., Huang, S. C., Hartenstein, J. S., Snyder, M., Marchesi,
V. T. & Benz, E. J. (1999) J. Cell Biol. 145, 29–43.

24. Merdes, A. & Cleveland, D. W. (1998) J. Cell Sci. 111, 71–79.

25. Sodja, C., Walker, P. R., Brown, D. L. & Chaly, N. (1997) Biochem. Cell Biol.
75, 399–414.

26. Gil, J. & Wu, H. S. (2003) Cancer Invest. 21, 950–959.
27. Zink, D., Fische, A. H. & Nickerson, J. A. (2004) Nat. Rev. Cancer 4, 677–687.
28. Shumaker, D. K., Kuczmarski, E. R. & Goldman, R. D. (2003) Curr. Opin. Cell

Biol. 15, 358–366.
29. Ancin, H., Roysam, B., Dufresne, T. E., Chestnut, M. M., Ridder, G. M.,

Szarowski, D. H. & Turner, J. N. (1996) Cytometry 25, 221–234.
30. Irinopoulou, T., Vassy, J., Beil, M., Nicolopoulou, P., Encaoua, D. & Rigaut,

J. P. (1997) Cytometry 27, 99–105.
31. Lieb, J. D., Ortiz de Solorzano, C., Rodriguez, E. G., Jones, A., Angelo, M.,

Lockett, S. & Meyer, B. J. (2000) Genetics 156, 1603–1621.
32. Schupp, S., Elmoataz, A., Herlin, P. & Bloyet, D. (2001) Anal. Quant. Cytol.

Histol. 23, 257–267.
33. Eils, R. & Athale, C. (2003) J. Cell Biol. 161, 477–481.
34. Voss, T. C., Demarco, I. A., Booker, C. F. & Day, R. N. (2004) BioTechniques

36, 240–247.
35. Swedlow, J. S., Goldberg, I., Brauner, E. & Sorger, P. (2003) Science 300,

100–102.
36. Ecker, R. C. & Steiner, G. E. (2004) Cytometry 59A, 182–190.
37. Rigaut, J. P., Vassy, J., Herlin, P., Duigou, F., Masson, E., Briane, D., Foucrier,

J., Carvajal-Gonzalez, S., Downs, A. M. & Mandard, A. M. (1991) Cytometry
12, 511–524.

38. Belien, J. A., van Ginkel, H. A., Tekola, P., Ploeger, L. S., Poulin, N. M., Baak,
J. P. & van Diest, P. J. (2002) Cytometry 49, 12–21.

39. Lin, G., Adiga, U., Olson, K., Guzowski, J. F., Barnes, C. A. & Roysam, B.
(2003) Cytometry 56A, 23–36.

40. Castleman, K. R. (1996) Digital Image Processing (Prentice–Hall, Englewood
Cliffs, NJ).

41. Russ, J. C. (1992) The Image Processing Handbook (CRC, Boca Raton, FL).
42. Jahne, B. (2002) Digital Imaging Processing (Springer, Berlin), 5th Ed.
43. Soille, P. (2003) Morphological Image Analysis (Springer, Berlin), 2nd Ed.
44. Tvarusko, W., Bentele, M., Misteli, T., Rudolf, R., Kaether, C., Spector, D. L.,

Gerdes, H. H. & Eils, R. (1999) Proc. Natl. Acad. Sci. USA 96, 7950–7955.
45. Eils, R., Gerlich, D., Tvarusko, W., Spector, D. L. & Misteli, T. (2000) Mol.

Biol. Cell 11, 413–418.
46. Platani, M., Goldberg, I., Swedlow, J. R. & Lamond, A. I. (2000) J. Cell Biol.

151, 1561–1574.
47. Kyan, M. J., Guan, L., Arnison, M. R. & Cogswell, C. J. (2001) IEEE Trans.

Biomed. Eng. 48, 1306–1318.
48. Chin, K., Ortiz de Solorzano, C., Knowles, D., Jones, A., Chou, W., Rodriguez,

E. G., Kuo, W. L., Ljung, B. M., Chew, K., Myambo, K., et al. (2004) Nat. Genet.
36, 984–988.

49. Marr, D. (1982) Vision (Freeman, New York).

4450 � www.pnas.org�cgi�doi�10.1073�pnas.0509944102 Knowles et al.


